skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agrapidis, Cliò Efthimia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stability of the spin polaron quasiparticle, well established in studies of a single hole in the 2D antiferromagnets, is investigated in the 1D antiferromagnets using at t -J J model. We perform an exact slave fermion transformation to the holon-magnon basis, and diagonalize numerically the resulting model in the presence of a single hole. We demonstrate that the spin polaron collapses - and the spin-charge separation takes over - due to the specific role played by the magnon-magnon interactions and the magnon hard-core constraint in the 1Dt t -J J model. Moreover, we prove that the spin polaron is stable for any strength of the magnon-magnon interaction other than the unique value found in a 1D antiferromagnet with the continuous symmetry of the spin interactions. Fine-tuning to this unique value is extremely unlikely to occur in quasi-1D antiferromagnets, therefore the spin polaron is the stable quasiparticle of realistic 1D materials. Our results lead to a new interpretation of the ARPES spectra of quasi-1D antiferromagnets in the spin polaron language. 
    more » « less